Hemimethyl Ester Acid Chloride (V).-The monoester IV ( 572 mg .) was covered with 5 ml . of redistilled oxyalyl chloride, cooled in an ice bath, and allowed to stand for 1 hr . The excess oxalyl chloride was removed in vacuo. Dry benzene was added to the residue and distilled in vacuo to remove last traces of chlorinating agent. This acid chloride was used in the next step without further purification.

1,2,3,4,4a $\alpha, 10 \mathrm{a} \beta$-Octahydro-1 $\alpha$-(2-hydroxyethyl)-7-methoxy$\mathbf{2} \beta$-methyl-2 $\alpha$-phenanthrenecarboxylic Acid $\delta$-Lactone (VIII). The acid chloride $V$ was dissolved in 15 ml . of dry ether and at once added to a solution of 35 mg . of lithium aluminum hydride in 15 ml . of dry ether maintained at $-10^{\circ}$ and protected with dry nitrogen. The thick milky gel was stirred at $-10^{\circ}$ and protected with dry nitrogen. The thick milky gel was stirred at $-10^{\circ}$ for 1 hr . and at room temperature for an additional hour. Then 20 ml . of $1 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ was added with stirring and the mixture was partitioned between 200 ml . of ether and 100 ml . of $1 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. The ether layer was washed with $3 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ and water. The ether was evaporated to give 444 mg , of an oil representing a mixture of the lactone VIII and diol. While refluxing this oil in 20 $\mathrm{m} l$. of ethanol, 11.2 g . of FaOH in 100 ml . of $50 \%$ ethanol was added in $25-\mathrm{ml}$. aliquots every hour for 4 hr . After most of the alcohol was evaporated, the reaction mixture was diluted with water and extracted with ether. The alkaline phase was acidified with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, ether was added, and the two layers were shaken intermittently to form the lactone. The aqueous phase was separated and re-extracted with ether. The combined ether phases were washed three times with water, with $5 \% \mathrm{NaHCO}_{3}$, and again with water, then evaporated to give 248 mg . of TIII. This lactone was recrystallized from a mixture of acetone-petroleum ether (b.p. $60-80^{\circ}$ ), aqueons ethanol, and aqueous acetone to provide colorless crystals, m.p. 170-171

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}$ : $\mathrm{C}, 75.97 ; \mathrm{H}_{1} 8.05$. Found: C , $75.74 ; ~ H, 7.94$.

The melting point of this product was depressed $20^{\circ}$ by adnixture with the methyl ether of lactone I. On admixture with the methyl ether of lactone II the depression was $30^{\circ}$.

## Myelographic Agents. II. Some Iodophthalates ${ }^{1}$

J. H. Ackerman, V. Akullian, C. Moore, and A. A. Latsen<br>Sterling-Winthrop Research Institute, Rensselaer, New York

Received July 28, 1965
As part of our extensive program in the field of radiopaque, diagnostic agents we have prepared series of 3 - and 4 -iodophthalates, 5 -iodoisophthalates, and iodoterephthalates (Table I). ${ }^{2}$ For the most part, these compounds were synthesized as potential myelographic agents. When the liquid members of these series were injected into the subarachnoid space of cats and dogs, they permitted visualization of the details of the spinal-cord structure. Many of these compounds were eliminated from the animats in periods ranging from a few weeks to a few months.

The bis esters were prepared from the iodo acids and an alcohol with an acid catalyst. The mixed esters of 3-iodophthalic acid were prepared from 3 -iodophthalic anhydride. When the anhydride was refluxed with methanol or 1-butanol, a half ester was obtained. By analogy with the reactions of 3-nitrophthalic anhydride ${ }^{3}$ and the preparation of the two half ethyl esters of 3 iodophthalic acid, ${ }^{4}$ it is presumed that the isolated products were the 2-esters. The sodium salts were prepared from the half esters and allowed to react with an alkyl halide or tosylate; the mixed esters were obtained.

The mixed $\overline{\mathrm{j}}$-iodoisophthalate esters were prepared generally by the reaction of alkyl halides, sulfates, or tosylates with the half ester sodium salts (Table II). The latter were prepared by partial hydrolysis of the bis esters.

[^0]
## Experimental Section

Iodophthalic Acids.-3-Iodophthalic acid was prepared from 3 aminophthalic: acid by a procedure similar to that of Kenner and Mathews. ${ }^{5}$ 4-Iodophthalic acid was prepared from 4-nitrophthalic acid. The nitro group was reduced to the amine with Raney nickel and hydrazine hydrate by the general procedure of Balcom and Furst. ${ }^{6}$ The amine was diazotized and converted to the iodo compound by the Sandmeyer reaction. 5-Iodoisophthalic acid was prepared from 5 -aminoisophthalic acid by a procedure similar to that of Grahl. ${ }^{7}$ Iodoterephthalic acid was prepared from nitroterephthalic acid by the method used to prepare 4-iodophthalic acid.

3-Iodo-2-methoxycarbonylbenzoic Acid.-A mixture of 137 g . ( 0.50 mole) of 3 -iodophthalic anhydride ${ }^{8}$ and 350 ml , of absolute methanol was refluxed for 20 hr . The excess methanol was removed under reduced pressure. The residue (163 g., m.p. $125-$ $140^{\circ}$ ) was recrystallized from dilute methanol and then benzene to give $81.4 \mathrm{~g} .(53 \%)$ of colorless, elongated prisms, m.p. 164 $165^{\circ}$.

Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{IO}_{4}$ : $\mathrm{I}, 41.47$; neut. equiv., 306.1. Found: $I_{1} 41.78$; neut. equiv., 306.4.

Sodium 3-Iodo-2-methoxycarbonylbenzoate.-To a solution of 306 g . ( 1.0 mole ) of 3-iodo-2-methoxycarbonylbenzoic acid in 11 . of acetone was added 505 ml , of 2.0 N ( 1.0 mole ) NaOH . Acetone was added to turbidity, and the mixture was cooled overnight. Solid separated and was collected and dried at $100^{\circ}$ to give 209.7 g . $(64 \%)$ of colorless product.

Sodium 2-butoxycarbonyl-3-iodobenzoate was prepared in a similar manner.

Sodium Alkyl (or Alkoxyalkyl) 5-Iodoisophthalates. Sodium Butyl 5-Iodoisophthalate.-A solution of 634 g . ( 1.6 moles) of undistilled dibutyl 5 -iodoisophthalate (46) in 2.5 l . of dimethylformamide was cooled to $5^{\circ}$ and a solution of 62.8 g . ( 1.6 moles ) of NaOH pellets in 500 ml . of water was added in one batch with rapid stirring. After 2 min . the reaction had warmed to about $40^{\circ}$ and was then heated on a steam bath at $78-85^{\circ}$ for 0.5 hr . The solvents were removed by distillation (reduced pressure) to give a residue of diester, half ester sodium salt, and disodium salt which was stirred with about 3 l . of water at $85^{\circ}$. The aqueous layer was separated from the insoluble diester by decantation and was treated with Darco G60, filtered, and cooled to $5^{\circ}$. The crystalline half ester sodium salt crystallized and was removed by filtration and washed with pentane. The slightly damp solid was dissolved in 2.5 l . of hot water. The solution was treated with Darco G60, filtered, and cooled. The solid was removed by filtration, washed witll pentane, and dried at $90^{\circ}$ in vacuo to give $420 \mathrm{~g} .(73 \%)$ of colorless needles: neut, equiv., 370 (calcd., 370).

The other sodium alkyl (or alkoxyalkyl) 5 -iodoisophthalates (Table II) were prepared in a similar manner.

Alkyl and Alkoxyalkyl p-Toluenesulfonates.-The $p$-toluenesulfonates were prepared from a number of alcohols by the general procedure of Tipson. ${ }^{9}$ The tosylates made were the propyl, ${ }^{10}$ butyl, ${ }^{11}$ methoxyethyl, ${ }^{9}$ 2-ethoxyethyl, ${ }^{9}$ 2-butoxyethyl, ${ }^{9} 3$-methoxypropyl, 3-ethoxypropyl, ${ }^{12}$ 3-propoxypropyl, 3-nethoxybutyl, ${ }^{13}$ 2-(2-ethoxyethoxy)ethyl, ${ }^{14}$ 2-(2-butoxyethoxy)ethyl, and 1,3-diethoxy-2-propyl. These tosylates were used as intermediates to prepare mixed esters.

Most of the alcohols used for the preparation of the tosylates are commercially available (Eastman, Aldrich). 3-Methoxypropanol ${ }^{15}$ was prepared from 3-methoxypropionitrile. Reaction of the nitrile with ethanol and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ gave ethyl 3-methoxypropionate which was converted to the alcohol with lithium aluminum hydride.

3-Propoxypropanol ${ }^{16}$ was prepared from 3-propoxypropionitrile in the same manner. The nitrile was made by cyanoethylation ${ }^{17}$ of 1 -propanol.

[^1]Taide 1



Cominn.
$\mathrm{R}_{1}{ }^{*} \quad \mathrm{Ba}$
(1min.). ${ }^{\circ} \mathrm{C}$.

| Fornulia | - Calent. \% |  |  |
| :---: | :---: | :---: | :---: |
|  | $\bigcirc$ | H | ! |
| 3-Iodophthalates |  |  |  |
| $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{IO}_{4}$ | 41.40 | 3.76 | 36.41 |
| $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{IO}_{4}$ | 43.11 | 4.17 | 35.04 |
| $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{IO}$, | 41.29 | 4.00 | 33.56 |
| $\left.\mathrm{C}_{14} \mathrm{H}_{1} 1 \mathrm{I}^{1}\right)_{5}$ | 42.85 | 4.37 | 32:86 |
| $\mathrm{C}_{14} \mathrm{H}_{5}-\mathrm{IO}_{4}$ | 44.69 | 4.16 | \% 3 it |
| ( $\mathrm{C}_{6} \mathrm{H}_{2}, 1 \mathrm{O}_{4}$ | 47.50 | T. 24 | 31.411 |
|  | 45.73 | 5.04 | 31.211 |
|  | 4.01 | 5.34 | 29.20 |
| $\mathrm{C}_{4} \mathrm{II}_{15} \mathrm{IO}_{6}$ | 41.19 | 4.2 | ; 1.10 |
| $\mathrm{C}_{16} \mathrm{HE}_{41} \mathrm{IO}_{6}$ | 44.05 | 4.85 | 2 2!.19) |
| $\mathrm{C}_{40} \mathrm{H}_{49} \mathrm{IO}_{6}$ | 48.75 | 5.94 | 25.is |
| $\mathrm{C}_{18} \mathrm{H}_{4} \mathrm{IO}_{5}$ | 46.56 | 5) 43 | 27.34 |
| 4 -Iodophthahtes |  |  |  |
| $\mathrm{C}_{4} \mathrm{H}_{1}: \mathrm{IO}_{4}$ | 44.69 | 4.56 | 33.74 |
| $\mathrm{C}_{16} \mathrm{H}_{2} \mathrm{IO}^{\text {I }}$ | 47.5.; | -5. 24 | 31.40 |
| $\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{Cl}_{9} \mathrm{IO}_{3}$ | 48.79 | 5.94 | 25.75 |
| $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{IO}_{5}$ | 46.56 | -. 4.3 | 27.84 |
| $\mathrm{C}_{20} \mathrm{H}_{-99} \mathrm{I}$ | 45.81 | 5.5 | 94.1 |





| is | Me | ${ }^{1}-\mathrm{Pr}$ | 68 (10-5) |
| :---: | :---: | :---: | :---: |
| 19 | Me | $n-\mathrm{Bu}$ | 39) 42 |
| 20 | Me | $n$-Anyl | 37-43 |
| 21 | Mc | C. | 49-57 |
| 22 | Me | $1)$ | $\left.80-84 \times 15 \times 10^{-5}\right)$ |
| 23 | Me | E | $93\left(5 \times 10^{-5}\right)$ |
| 24 | Me | F | $53\left(10^{-5}\right)$ |
| 25 | Me | 1; | $143\left(4 \times 10^{-2}\right)$ |
| 26 | Ms. | 11 | $95\left(5 \times 10^{-5}\right)$ |
| $\because 7$ | Ms: | 1 | 85-95 $\left(2 \times 11^{-5}\right)$ |
| $\because 8$ | Et . | 13 | $\because 75$ |
| 29 | 1 H | C | 48.49 |
| :0 | E | 1) | $85-8 s\left(1.2 \times 10^{-9}\right)$ |
| :1 | Let. | $\dot{1}$ | -5-60 |
| iil | Et | F | 93( $\left.1.5 \times 10^{-4}\right)$ |
| 3:3 | Et | (; | $96.98\left(10^{-5}\right)$ |
| 34 | Et | II | $164\left(4 \times 10^{-2}\right)$ |
| 85 | Et | 1 | $811-89\left(3 \times 10^{-5}\right)$ |
| 36 | $n$-1'r | $n-\mathrm{P}^{\prime}$ | $84-58\left(10^{-5}\right)$ |
| 37 | $i-\mathrm{Pr}$ | $i-\mathrm{Pr}$ | (55-67 |
| 38 | $n-\mathrm{Pr}$ | C | 4:-44 |
| 39 | $n-\mathrm{I}^{\prime} \mathrm{r}$ | 1) | $100\left(5 \times 10^{-5}\right)$ |
| 40 | $n-\mathrm{F}$ 'r | E | $4{ }^{4} 4$ |
| 41 | $n-\mathrm{Pr}$ | F | $8285\left(10^{-5}\right)$ |
| 42 | $n-\mathrm{Hr}$ | (; | 90-93 (2) $\times 10^{\left.-\frac{1}{3}\right)}$ |
| $4 \%$ | $n-\mathrm{Pr}$ | H | 142 ( $4 \times 10^{-2}$ ) |
| 44 | $n-\mathrm{Pr}$. | I | $10\left(1-108\left(3 \times 10^{-5}\right)\right.$ |
| 4.5 | $n-\mathrm{Pr}$ | K | 142-144 (10--1 |
| 46 | $n-\mathrm{Br}_{11}$ | $n-\mathrm{Bu}$ | 90) 95 ( $5 \times 100^{-5}$ ) |
| 47 | $i-\mathrm{Bu}$ | $i-\mathrm{Bu}$ | 41-44 |
| 48 | $n-\mathrm{Br}$ | A | 78-81 |
| 49 | $n$-Bı | B | 40.45 |
| 50 | $n-\mathrm{Bu}$ | C | $98\left(10^{-5}\right)$ |
| 51 | $n-\mathrm{Bu}$ | 1) | $112\left(5 \times 10^{-5}\right)$ |
| 52 | $n-\mathrm{Bu}$ | E | $11.5-120\left(2 \times 10^{-5}\right)$ |
| \%; | $n-\mathrm{Bu}$ | F | $83-8.5\left(10^{-4}\right)$ |
| 54 | $n-\mathrm{B}_{11}$ | (; | $96-100\left(5 \times 10^{-5}\right)$ |
| 5 | $n-\mathrm{B}{ }_{1}$ | II | $85-90\left(5 \times 10^{-5}\right)$ |
| 0 | $n-\mathrm{Bu}$ | I | (0) $05\left(2 \times 10^{-5}\right)$ |
| 57 | $n-\mathrm{Bu}$ | . | $17.51800\left(5 \times 10^{-8}\right)$ |
| -s | $n-\mathrm{Bn} 1$ | K | $15 \mathrm{~s}-161\left(2 \times 10^{-5}\right.$ |


| 41.14 | 3.81 | 86.s2 | 217 | 1.5608 |
| :---: | :---: | :---: | :---: | :---: |
| 4\%.1; | 4.3i | 35.40 | 165 | 1.5049 |
| 41.3\% | 4.20 | :33.07 | 268 | 1.5524 |
| 42.63 | 4.50 | 32.37 | 192 | 1.5467 |
| 44.66 | 4.60 | :33.09 | 109 | 1.5458 |
| 47.30 | -10\% | :31.11s | 125 | 1.5336\% |
| 45.7 | 5.24 | :i1. 14 | 112 | 1.7360 |
| 46.80 | -5.12 | 29.6 | 1.96 | 1.7.ins |
| 41.47 | 4.22 | :i1: |  |  |
| 4.3.85 | 4.96 | 29.4 | 160 | 1.53\% |
| 45.78 | B. 31 | 26.1; | 级 | 1.5200 |
| 44.60 | 5. 59 | 27.33 | 260 | 1.5291 |
| 44.94 | 4.78 | 533.95 | 51 | 1.5482 |
| 47.75 | 5.20 | :31.4 | 49 | 1.5378 |
| 4. 8.86 | 6.01 | 26.21 | s2 | 1.5220 |
| 46.54 | 5.59 | 27.32 | 1:36 | 1.5304 |
| 45.69 | 5.73 | 23.81 | 105 | 1.5241 |


| 41.36 | 3.85 | 96.7 | 330 | 1.50:31 |
| :---: | :---: | :---: | :---: | :---: |
| 4.40 | 4.33 | 35.38 |  |  |
| 44.79 | 4.76 | 33.12 |  |  |
| 11.19 | 3.89 | :32.73 |  |  |
| 44.70 | 4.47 | 80.79 | 20:; | 1.54\%5 |
| 41.01 | 4.15 | 33.60 | 288 | 1.5574 |
| 4; 11 | 4.87 | :31.89 | 217 | 1.5496 |
| 44.46 | 4.94 | 31.27 | 197 | 1.5429 |
| 12: 2 | 4.10 | 72. 24 | 318 | 1.5491 |
| 4 E .45 | 4.46 | 20.610 | 248 | 1.54:1 |
| 41.16 | 8.70 | 33.411 |  |  |
| 4 ii .21 | 4.67 | 32.02 |  |  |
| tis. 83 | 4.57 | 29, | $9 ;$ | 1.73itic |
| 4; 03 | 4.45 | 31.74 |  |  |
| 44.41 | 4.71 | 30.67 | 142 | 1.0418 |
| 4568 | 4.90 | 30.04 | 128 | 1.7362 |
| 44.19 | 4.73 | 31.41 | 215 | 1.8417 |
| 4.10 | 4.67 | 28.69 | 145 | 1.3.7\% |
| 44.56 | 4.33 | 33. ${ }^{3}$ | 1.51 | 1.5469 |
| 4.69 | 4.58 | \% 4.2 |  |  |
| 44.67 | 3.74 | 31.49 |  |  |
| 46.91 | 5.34 | 29.15 | 99 | 1.53326 |
| 44.16 | 4.39 | 311.82 |  |  |
| tis. 84 | 5.17 | 30.29 | 11.5 | 1.5367 |
| 40.5 | 5.8.5 | 29.52 | 119 | 1.3312 |
| 45.85 | 5. 2 | :0, 01 | 17 s | 1.5375 |
| 45.31 | - 0.01 | 28.06 | 11. | 1.53:31 |
| 41.131 | -. 4 : | 27.02 | 2 S 4 | 1.3250 |
| 47.50 | B. $0^{2}$ | :31. (i) | \$1 | 1.3044 |
| 47.43 | -i.: | 31.14 |  |  |
| 42.91 | 4.38 | 31.71 |  |  |
| 44.8 | 4.51 | 30.59 |  |  |
| 45.85 | 4.84 | 30.14 | 103 | 1.5376 |
| 4. 04 | -5. 56 | 28.49 | 82 | 1.5291 |
| 45.45 | 5.04 | 29.85 | 108 | 1.537 |
| +5.1); | 5.20 | 29. 51 | 95 | 1.5\% |
| 45.30 | - 8. | 28.88 | 86 | $1 .-$ |
| 46.94 | A. 40 | 9) 02 | 133 | t |
| 46.2 | $\therefore 24$ | 27.13: | 102 |  |
| 45.81 | - 85 | 2 (6) | 92 |  |
|  |  | $\because 6.15$ |  |  |


| Compul. no. | $\mathrm{H}_{1}{ }^{\text {a }}$ | Rsis | $\begin{aligned} & \mathrm{Mi.p}{ }^{b} \text { or } \mathrm{b} . \mathrm{p} . \\ & (\min .),{ }^{\circ} \mathrm{C} . \end{aligned}$ | Formula | $\mathrm{C}$ | $\begin{gathered} \text { aled. } \% \\ \text { \% } \end{gathered}$ | I | C | ound. $\mathrm{H}$ | I | Viscosity. es. at $25^{\circ}$ | $n^{\text {25 }}$ D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 59 | $n$-Amyl | $n$-Amyl | $95-100$ ( $10^{-5}$ ) | $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{IO}_{4}$ | 50.01 | 5.83 | 29.36 | 49.80 | 5.83 | 29.3 | 82 | 1.5305 |
| 60 | $n$-Amyl | A | 80-82 | $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{IO}_{5}$ | 44.35 | 4.71 | 31.24 | 44.37 | 4.81 | 30.93 |  |  |
| 61 | $n$-Amyl | C | $94\left(10^{-5}\right)$ | $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{IO}_{5}$ | 47.01 | 5.34 | 29.23 | 46.72 | 5.42 | 29.20 | 97 | 1. 5331 |
| 62 | $n$-Amyl | D | $120\left(2 \times 10^{-5}\right)$ | $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{IO}_{5}$ | 49.36 | 5.89 | 27.45 | 49.24 | 5.81 | 27.36 | 83 | 1.5259 |
| 63 | $n$-Amyl | F | $125\left(5 \times 10^{-5}\right)$ | $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{IO}_{5}$ | 48.22 | 5.62 | 28.31 | 48.18 | 5.68 | 28.57 | 97 | 1.5302 |
| 64 | $n$-Amyl | G | 162-163 (10-2) | $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{IO}_{5}$ | 49.36 | 5.89 | 27.45 | 49.51 | 5.70 | 27.19 | 101 | 1.5258 |
| 65 | $n$-Amyl | H | $98\left(10^{-5}\right)$ | $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{IO}_{5}$ | 48.22 | 5.62 | 28.31 | 48.06 | 5.87 | 28.74 | 138 | 1.5298 |
| 66 | $n$-Amyl | I | $100-104\left(3 \times 10^{-5}\right)$ | $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{IO}_{6}$ | 47.71 | 5.69 | 26.53 | 47.98 | 5.62 | 26.50 | 98 | 1. 5266 |
| 67 | $n$-Amyl | J | 171-175 (5 $\times 10^{-5}$ ) | $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{IO}_{8}$ | 49.81 | 6.17 | 25.06 | 49.97 | 6.13 | 24.76 | 91 | 1.5201 |
| 68 | $n$-Hexyl | $n$-Hexyl | 33-36 | $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{IO}_{4}$ | 52.18 | 6.35 | 27.57 | 52.22 | 6.03 | 26.91 |  |  |
| 69 | B | B | 67-69 | $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{IO}_{6}$ | 41.19 | 4.20 | 31.09 | 41.00 | 4.24 | 30.6 |  |  |
| 7) | B | 1) | $104-108\left(5 \times 10^{-5}\right)$ | $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{IO}_{6}$ | 45.34 | 5.15 | 28.19 | 45.47 | 5.16 | 28.02 | 171 | 1.5363 |
| 71 | C | C | 46-49 | $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{IO}_{6}$ | 44.05 | 4.85 | 29.09 | 43.75 | 4.62 | 29.0 |  |  |
| 7 | C | 1) | 88-92 ( $10^{-3}$ ) | $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{IO}_{6}$ | 46.56 | 5. 43 | 27.34 | 46.49 | 5.37 | 27.37 | 118 | 1.529\% |
| 73 | C | I | 167-170 ( $2 \times 10^{-2}$ ) | $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{IO}_{7}$ | 45.01 | 5.25 | 26.43 | 45.15 | 5.22 | 26.54 | 134 | 1.5308 |
| 74 | 1) | 1) | $120-122$ ( $10^{-5}$ ) | $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{IO}_{6}$ | 48.79 | 5.94 | 25.78 | 48.81 | 5.82 | 25.77 | 92 | 1.5218 |
| 75 | D | F | ${ }^{95}-100\left(2 \times 10^{-5}\right)$ | $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{IO}_{6}$ | 47.71 | 5.69 | 26.53 | 47.47 | 5.86 | 26.25 | 113 | 1.5258 |
| 76 | D | G | $105\left(2 \times 10^{-5}\right)$ | $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{IO}_{6}$ | 48.79 | 5.94 | 25.78 | 49.11 | 6.23 | 25.76 | 110 | 1.5231 |
| 77 | D | H | 185-187 ( $10^{-5}$ ) | $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{IO}_{8}$ | 47.71 | 5.69 | 26.53 | 47.82 | 5.47 | 26.56 | 140 | 1.5257 |
| 78 | D | K | 150 (10-5) | $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{IO}_{7}$ | 48.28 | 5.98 | 24.30 | 48.49 | 5.84 | 23.62 | 186 | 1.5158 |
| 79 | F | F | $118\left(10^{-5}\right)$ | $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{IO}_{6}$ | 46.56 | 5.43 | 27.34 | 46.76 | 5.74 | 26.57 | 131 | 1.5283 |
| 80 | H | H | $100\left(2 \times 10^{-4}\right)$ | $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{IO}_{6}$ | 46.56 | 5.43 | 27.34 | 46.41 | 5.14 | 27.54 | 221 | 1.5290 |
| 81 | H | I | 42-43 | $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{IO}_{7}$ | 46.16 | 5.51 | 25.65 | 46.50 | 5.93 | 25.74 |  |  |
| 82 | I | I | 204-208 ( $6 \times 10^{-2}$ ) | $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{IO}_{8}$ | 45.81 | 5.57 | 24.21 | 45.79 | 5.63 | 24.57 | 151 | 1.5232 |
| 83 | I | J | $183\left(2 \times 10^{-2}\right)$ | $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{IO}_{8}$ | 47.83 | 6.02 | 22.98 | 47.72 | 5.91 | 23.11 | 124 | 1.5193 |
| 84 | I | K | 184-186 ( $2 \times 10^{-2}$ ) | $\mathrm{C}_{2}, \mathrm{H}_{31} \mathrm{IO}_{8}$ | 46.85 | 5.80 | 23.57 | 46.86 | 5.85 | 23.75 | 221 | 1.5174 |
| 85 | J | J | 213 (10-5) | $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{IO}_{8}$ | 49.66 | 6.43 | 21.87 | 49.44 | 6.16 | 22.08 | 113 | 1.5133 |
| 86 | K | K | 191-195 (3 $\times 10^{-3}$ ) | $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{IO}_{3}$ | 47.83 | 6.02 | 22.98 | 47.61 | 6.15 | 23.24 | 435 | 1.5136 |
| Iodoterephthalates |  |  |  |  |  |  |  |  |  |  |  |  |
| 87 | $n-\mathrm{Pr}$ | $n-\operatorname{Pr}$ | 80-85 (10-5) | $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{IO}_{4}$ | 44.69 | 4.56 | 33.74 | 44.85 | 4.58 | 33.5 | 32 | 1.5498 |
| 88 | $n-\mathrm{Bu}$ | $n-\mathrm{Bu}$ | $70-80\left(5 \times 10^{-5}\right)$ | $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{IO}_{4}$ | 47.53 | 5.24 | 31.40 | 47.65 | 5.36 | 31.2 | 30 | 1.5400 |
| 89 | C | C | 42-44 | $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{IO}_{6}$ | 44.05 | 4.85 | 29.09 | 44.05 | 4.90 | 28.70 |  |  |
| 90 | D | 1) | 165-177 ( $2 \times 10^{-2}$ ) | $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{IO}_{6}$ | 48.79 | 5.94 | 25.78 | 48.83 | 5.86 | 25.26 | 56 | 1.5238 |

${ }^{a} \mathrm{~A}=2$-hydroxyethyl, $\mathrm{B}=2$-methoxyethyl, $\mathrm{C}=2$-ethoxyethyl, $\mathrm{D}=2$-butoxyethyl, $\mathrm{E}=3$-methoxypropyl, $\mathrm{F}=3$-ethoxypropyl, ( $=3$-propoxypropyl, $\mathrm{H}=3$-methoxybutyl, $\mathrm{I}=2$-(2-ethoxyethoxy)ethyl, $\mathrm{J}=2$-(2-butoxyethoxy) ethyl, and $\mathrm{K}=1,3$-diethoxy- 2 propyl. ${ }^{6}$ Melting points (corrected) were takell in a Hershberg-type apparatus.

Table II
Sodila 5-Iodoisophthalite Half Estehs

| $\mathrm{R}^{a}$ | Formula |  |  |  |  | M.p. ${ }^{\circ} \mathrm{C} .{ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\overbrace{\mathrm{I}}^{\text {Calcd }}$ | $\begin{aligned} & \%- \\ & \mathrm{Na} \end{aligned}$ | $\underset{\text { I }}{- \text { Found }}$ | $\begin{aligned} & \%- \\ & \mathrm{Na} \end{aligned}$ |  |
| Me | $\mathrm{C}_{9} \mathrm{HelNaO}_{4}$ | 38.68 | 7.09 | 38.6 | 6.86 | 211.4-222.6 |
| Et | $\mathrm{CiOH}_{10} \mathrm{HaNaO}_{4}$ | 37.09 | 6.72 | 36.65 | 6.66 | 238-243 |
| $n$-Pr | $\mathrm{Can}_{11} \mathrm{H}_{10} \mathrm{INaO}_{4}$ | 35.65 | 6.46 | 35.76 | 6.41 | 245 indef. |
| $n$-Ru | $\mathrm{Ca2}_{21} \mathrm{H}_{21} \mathrm{INaO}$ | 34.30 | 6.22 | 33.83 | 6.18 | 244-245 |
| $n-$ Amyl | $\mathrm{C}_{35} \mathrm{H}_{4} \mathrm{INaO}_{4}$ | 33.04 | 6.00 | 32.85 | 5.86 | 239-243 |
| D | $\mathrm{C}_{44} \mathrm{H}_{6} 1 \mathrm{INaO}^{\text {a }}$ | 30.64 | 5.55 | 30.95 | 5.61 | 143 indef. |
| 1 | $\mathrm{C}_{4} \mathrm{H}_{46} \mathrm{INaO}_{5}$ | ${ }^{c}{ }^{\text {c }}$ |  |  |  | 130-140 |
| ${ }^{a} \mathrm{D}=2$-butoxyethyl; $\mathrm{I}=2$-(2-ethoxyethoxy)ethyl. ${ }^{b}$ All melting points are corrected and were taken in a Hershberg-type apparatus. © All analytical sample was not prepared. |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

Bis Esters of 3-Iodophthalic Acid. Bis(2-ethoxyethyl) 3Iodophthalate ( $\mathbf{1 0}$ ). A mixture of 125 g . ( 0.43 mole ) of 3 -iodophthalic acid, 84.8 g . ( 0.94 mole) of 2-ethoxyethanol, 5 ml . of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, and 300 ml . of dry benzene was refluxed for $\left.{ }^{-9}\right) \mathrm{hr}$. with a water-separatory tube. A total of 18 ml . of water $s$ obtained. The reaction mixture was cooled in an ice bath, 250 ml . of ether was added The mixture was extracted with 1. portions of 0.67 N aOH until the addition of dilute the basic extracts did not give a precipitate. The organic $\therefore$ washed twice with water, once with $1 \% \mathrm{KMnO}_{4}$ solu-
tion, twice more with water, and twice with saturated NaCl . The organic layer was treated with Darco G60 and Drierite, filtered, and evaporated under reduced pressure. The residue, 142 g . of oil, was distilled to give 71.7 g . $(38 \%)$ of colorless liquid, b.p. $122^{\circ}\left(10^{-5} \mathrm{~mm}\right.$.).

The other bis esters of 3-iodophthalic acid were prepared in a similar manner and by the procedure described for dibutyl 5 iodoisophthalate (46).

Mixed Esters of 3-Iodophthalic Acid.-The mixed esters of 3iodophthalic acid were prepared from the alkyl tosylates or halides and sodium 3-iodo-2-methoxycarbonylbenzoate or sodium 2-butoxycarbonyl-3-iodobenzoate by a process similar to that described for the preparation of butyl 3 -methoxybutyl 5 -iodoisophthalate (55).

Bis Esters of 4-Iodophthalic Acid.-The bis esters of 4-iuduphthalic acid were prepared by procedures similar to those described for the preparation of the bis esters of 3 -iodophthalic acid and 5 -iodoisophthalic acid.

Bis Esters of 5-Iodoisophthalic Acid. Dibutyl 5-Iodoisophthalate ( 46 ). - A mixture of 292 g . ( 1.0 mole) of 5 -iodoisophthalic acid in 500 ml . of 1 -butanol was heated on a steam bath with stirring, and a slow strean of HCl was passed into the mixture. A solution resulted after about 4 hr . The heat was renoved, and HCl was passed in for another hour. The cooled, two-layer reaction mixture was stirred with 25 g . of Drierite for 0.5 hr . and left overnight. The mixture was filtered, and the butanol was removed under reduced pressure. The residue was taken up in ether, washed with $2 \mathscr{\sim} \cdot \mathrm{NaOH}$ solution until the washings were alkaline, with water until the washings were neutral, and with saturated $\mathrm{NaCl}_{1}$, and treated with Drierite. The mixture was filtered and, the ether was removed under reduced pressure. The residue, 355 g . ( $88 \%$ ) of light amber oil, $n^{25} \mathrm{D}$ 1.5375 , was distilled to give a colorless oil, b.p. $115-120^{\circ}\left(2 \times 10^{-5}\right.$ mim.), $n^{25} \mathrm{D} 1 . \overline{5} 377$.

The wher bis csters of 5 -iodoinoph halie acid were prepared by at similar procedure and that described for the preparation of his( $2-$ cthoxyethyl) 3-iodophthalate ( $\mathbf{1 0}$ ).

Mixed Esters of 5-Iodoisophthalic Acid. Butyl 3-Methoxybutyl 5 -Iodoisophthalate.--A mixture of 420 g . ( 1.14 moles) of sodium bityl in-iodoisophthalate and 323 g . (1.25 moles) of : ncthoxybutyl $p$-toluenesulfonate in 500 min. of dinethylformanide was heated on a steam bath with stining. In about 0.5 hr . sodium $p$-toluenesulfonate started to separate. After the mixture was heated for 20 hr ., it was concentinted under reduced presure and the residue was treated with hexane. The salt wate romoved by filtration and washed with hesane. The combined hex:ane sohtions (about 3 l.) were washed with 2 Ca , NaOH sohtim, water, dilute $\mathrm{K}_{1} \mathrm{TrO}_{4}$ solution, water, and saturated NaCl . The hexane solution was treated with Drierite, decanted from the Dricrite, stirred with Darco (660 and Dricrite fin 1 hro, : and filtered. The hexane was removed under reduced preswe: yiekd 463 g . $(94 \%)$ of light amber oil, $n^{25}$ р 1.5327 . Distillation gave : colurless oil, $n^{25} 11.53328$.

Inow of the other mixed cuters of 5 -iodoisophthatic acid were prepared by a sinilar procedure from the sodiun $\overline{\mathrm{o}}$-iodonsophthate half esters (Tahle II) and alky ( 1 a atkoxalkyl) tomylaten, halides, or sulfate.

Butyl 2-Ethoxyethyl 5-Iodoisophthalate.--The aid chhmide

 (10.44 mole) of thionyl chloride ins 1 l . of (Cly for ahmint 16 br .





 phthatate 10 .
 Prom the louty aced chleride.
Diesters of Iodoterephthalic Acid.-.The diesters of iochoterephthatic ach were prepared in : manmer sinular to that deoribed


Acknowledgement.--The :unthore are indebted to Dr. J. Hoppe, Mr. A. Brousecein, Mr. J. Roman, and Mr. J. Heakey fin the result- of the biological studies :and to Mr. F. Fleisher and staff for :maly ticul services.

## Book Reviews

T'wo Books on the History of Drugs and Experimental Therapentics: A. Readings in Pharmacology. Edited by B. Holmstedt and J. Lilistrand. The Mamillan Company, New York, N. Y. 1963. x $+39 \overline{5} \mathrm{pp} .23 . \overline{5} \times 16 \mathrm{~cm}$. $\$ 7.50$. B. Pharmacy in History. By J. E. Treise. Bailliète, Tindall and Cox, London. 1964. vii +265 pp. $24 \times$ 16 cill, $\$ 3.2 \overline{5}$.
These two quite unlike books lave the same general purpose: to lead us back to the important discoveries in medicinal science so that we may get in the mood for new ventures by learning from the insight, experiments, and failures of our predecessors. The volume by Trease devotes $2 \overline{5}$ pages to the ancient history of plarnacy from Galen to early alchemy; the rest of the book (230 pages) offers a chronological review of the development of British pharmacy and is thus quite narrow in scope and in providing inspiration.

It is different in the volume of the Swedish authors. Starting with the "Ebers papyrus" (Egypt, 1550 B. C.), which reads astonishingly like sone of our compounded prescriptions, we are led from antiquity to the rise of experimental pharmacology after Withering. An inpressive list of the classical founders of pharmacology follows, arranged according to their fields of specialization. A biography is given for each of them, some barkground material for the state of a field of medical science at the time of their revolutionary discovery, and then the direct (quotation from the paper which reported the decisive experiments and their interpretation. Mons of us have read the results of these experiments in textbooks, often reinterpreted in the light of later findings. But how many of us have had the thrill of raading the original paper which heralded a completely new er: of medicinal science, especially if the paper were published long before we started to read journals? By isolating the pertinent sections of these articles, a few of them in their original language, the editors have provided for their readers the sharing of the excitement that the first readers of those papers must have experienced. Indeed, in at least one photographic illustration this excitement has beer transmitued to us pictorially: the shapshot shows Otto Loewi demonstrating the humoral stimulation of a perfused heart in 1926 and behind hinn appears the face of a man with sucb an expression of incredulity and joy that his wonder is communicated to us. Page after page brings us the renewed awe at the first great step forward in a previonsly ununderstandable situation. Not all the men thus cuoted belong to a long-ago past. A considerable number of active members of the Division of Nedicinal Chemistry of the Anerichn Chemical Society have
joined the ranke of incentstanding pharnacologists whene wink have becone chasic. :nd whose papers have been included in this volume. Many pharmacologists from other countries whone: lectures have grinced recent American Chemical Society meetingare aloo to be found.
"Rcadings in Pharnacolog." is a book for emjoynucnt on :" (pniet evening. It will rekindle the enthusiasm which we all fell as students, and help nis to relive many of the great moments of our field of work and avocation.
University of $V_{\text {irfinia }}$
Alfrifd Burgi:n
Chariottestille, Vikgisin

Advances in Pharmacology. Volume 3. Edited hy Sllvin Gabitmit and Parghurst A. Shorb. Acmdemic Pres loc., New York. N. Y . $19164 . \quad$ wiii $+341 \mathrm{pp} . \quad 16 \times 23 \mathrm{cml}$.
This volume contans the following six chapters: Experincontal Approarhes to the Development of Antianginal Drugs by 31. .I. Wiubury, Pharmacological A ppects of Parkinsonism by A. II. Friednan and G. M. Fverett, The Pharmacology and Biochemittry of Parasitic. Hehninths by T. E. Mansour, The Adrenergic Syaten :und Syupathominetic Anmes by R: Alarley, Plarninacological Aspects of Drug Dependence By G. A. Dentin :mb 11. H. Seevers and 1)rugs Tised in Control of Reproduction 1, ( f . Pincus and G . Bialy. Writen by these experimental hion)gists many of whon are located in medical schools or medical research institutes. the approach to all of the topics is first :m "xploration of basic conditions in the tissues and organisme nuder discussion, of theories, and a review of working hypotheser of the authors and of those fonnd in the literature. Even the subsequent sections which deal with therapeutic aspects of the respeclive agents are treated essentially from a fundamental phamotcologie point of view. Thus. virtually every page in wough provoking ind hoi, just descriptive. The editors have dhat on excellent job holding the diselssion uniformher or ver high level.
This volume is recommonded to biochemints, phamacolugists: and clinicians with a deep interest in medicol science. Several of the topics have barely ever been presented in a more concise an, critical way.
I'niversity af Yibginia
Alfrain Bu
(harlotemathiv, Vimgivil


[^0]:    Paper I: J. Biggins, J. H. Ackerman, and A. A. Larsen, J. Med. 8. 728 (1965).
    any of the compounds listed in Table I are mentioned in British 7.083 (May 31. 1961): Chem. Abstr., 56. $4683 h$ (1962). -oyscheider and A. Lipschitz, Monatsh., 21، 787 (1900). Chaudhari and K. S. Nareund, J. Uuiv. Bombay, A17, 25

[^1]:    (5) J. Kenner and A. MI. Mathews, J. Chem. Soc., 105, 2471 (1914). (6) D. Balcom and A. Furst. J. Am. Chem. Soc., 75, 4334 (1953).
    (7) A. Grahl, Ber., 28, 84 (1895).
    (8) F. F. Blicke and F. D. Smith. J. Am. Chem. Soc., 51, 1865 (1929).
    (9) R. S. Tipson, J. Org. Chem., 9. 235 (1944).
    (10) F. Hahn and H. Walter. Ber.. 54, 1531 (1921).
    (11) H. Gilman and N. Beaber, J. Am. Chem. Soc., 47, 518 (1925).
    (12) P. M. Laughton and R. E. Robertson, Can. J. Chem., 33, 1207 (1955).
    (13) A. H. Sommers, U. S. Patent $2,891,063$ (June 16, 1959).
    (14) C. W. Tasker and C. B. Purves. J. Am. Chem. Soc., 71, 1017 (1949).
    (15) H. S. Hill, ihid., 50, 2728 (1928).
    (16) M. H. Paloinaa, Chem. Zentr., II, 1913 (1956).

